Curve Straightening & Understanding Meaning of Graphs

- It is an important skill to be able to manipulate and analysis graphs in order to fully understand all the information contained in the graphs
- Below is a chart that summarizes some common shaped graphs

* know of shapes ! graphs!

Line Shape	Equation	Relationship	Graph
linear	y = mx + b	directly proportional	
parabolic (around the y-axis)	$y = x^2$	proportional to the square	
inverse or parabolic (around the x-axis)	$y = \sqrt{x}$	proportional to the square root	
hyperbolic	$y = \frac{1}{x} \text{ or}$ $y = \frac{1}{x^2}$	inversely proportional	

• EXAMPLE: Sketch the shape of the graph below.

- It is usually easier to analyze a linear graph, therefore, some curved graphs will need to be straightened
- Below are the steps needed for curve/graph straightening

Step 1: Identify what is the manipulated variable (x) and what is the responding variable (y)

Step 2: Identify or create the physics equation that describes the relationship between the two variables

Step 3: Rearrange the equation to isolate the responding variable (y)

Step 4: Recognize what is happening to the manipulated variable (ie. is it squared or inversed or square rooted) according to the physics equation and plot a new graph with the new manipulated variables as described by the physics equation. * only x - variables will be plotted different! *

- Straight line graphs can be interpreted and analyzed according to the mathematical formula that describes all straight line graphs; y = mx + b
- Below are the steps needed to interpret and analyze a straight line graph
 <u>Step 1</u>: Identify what is the manipulated variable (x) and what is the responding variable (y)

<u>Step 2</u>: Identify or create the physics equation that describes the relationship between the x- and the y-variables

* Step 3: Rearrange the equation to isolate the responding variable (y)

Step 4: Identify where the manipulated variable (x) is in the formula

Step 5: Any part of the physics formula that is separated by an add or subtract function (+/-) and <u>IS NOT</u> multiplied by the manipulated variable (x), represent the y-intercept (b) of the graph. The y-intercept can be made up of one variable or several variables. If the physics formula has no add/subtract function, then the y-intercept is at zero (b=0).

Step 6: Any variables left in the equation that have not been accounted for as either the x-variable, y-variable, or y-intercept, are grouped together to represent the slope (m) of the graph.

for the variable of you are trying you are trying

EXAMPLE: A student performs an experiment to measure how the centripetal force changes as the velocity is altered. He collects the data shown on the table below.

		2 . 1/.2/
F _c (N) (y)	v (m/s) (∞)	52 (M2/52)
20.0	1.0	1.0
80.0	2.0	4.0
180	3.0	9.0 16.0 25.0
320	4.0	16.0
500	5.0	25.0

- a. Identify the manipulating and responding variable. Plot the data on a graph.
- b. Identify the physics equation that relates the two variables.

$$F_c = ma_c$$
 but $a_c = \frac{v^2}{r}$:: $F_c = \frac{mv^2}{r}$

c. What needs to be plotted on the x-axis to produce a straight line graph? Re-plot this new, straight line graph.

d. Identify the meaning of the slope of this graph.

From
$$y = m x + b$$

If $y = m x + b$

If $y = m$

$$F_{c} = \left(\frac{r}{m}\right)(V^{2}) + O$$

$$\therefore \sqrt{5lope} = \frac{m}{r}$$

e. Use your graph to determine the mass of the object if the radius of the circle is 1.15 m.

slope =
$$\frac{m}{r}$$
 = $\frac{1}{m}$ = $\frac{1}{m}$

EXAMPLE: During a NASA test, the velocity of the rocket is measured at different heights from the ground as it is being launched. The following information was recorded.

1	on Iculat	1
do	0.	06 5
	1 cula	
CO	ic	

Displacement (m) ∞	Velocity (m/s) ⅓	
25	37.4	
50	53.0	
75	64.7	
100	74.8	
125	84.0	
150	91.6	
175 99.0		
200 105.0		

- a. Identify the manipulating and responding variable.
- b. Determine the equation that is used to describe this situation. If you plotted the x- and y-variables as is, sketch the shape of graph you would expect to see.

c. Identify what variables need to be plotted to produce a straight line graph. Plot this data.

$$x = \sqrt{4}$$

Regression

d. What does the slope of the linear graph represent?

$$V_{\xi} = \sqrt{2ad}$$

$$V_{\xi} = m \quad x + b$$

$$V_{\xi} = \sqrt{2a}(\sqrt{2d}) + 0$$

e. Use your graph to determine what is the acceleration of the rocket?

$$a = (7.4392... \frac{m/s}{\sqrt{m}})^2$$

$$\alpha = 27.6709... \frac{m^2/s^2}{m}$$