Titration or pH Curves

- The concentration of H₃O⁺ ions or OH⁻ ions in a solution can be determined experimental using titration curves or pH curves
 - During an acid-base titration, as a weak base sample is titrated with a strong acid titrant (or vice versa) the pH of the sample solution is constantly being measured and recorded.
 - ₩o With acid-base titrations, the titrant continues to be added even well past the end point (the point in which a color change in the sample can be observed)
 - * A graph showing how the pH of the solution changed in relation to the amount of titrant added is then used to calculate the concentration of the of H₃O⁺ ions or OH⁻ ions in the original sample. This graph is called a <u>pH</u> curve or titration curve.
 - With acid-base titrations, an indicator is needed to observe the end point
 - ★ Acid/base indicators are weak acids. Therefore, they will have a small acid ionization constant (K_a) and will establish equilibrium can do calculations. The indicator/weak acid is one color and the conjugate base is another color
 - EXAMPLE: Consider the indicator phenol red.
 - a. Write out the Bronsted-Lowry equation for the phenol red indicator.

HPricag) + H2O(e) = Pricag) + H3O+(cg)
Neak acid base yellow

b. Predict which way the equilibrium will shift when a strong base is added to Le Chatelier's Jowers [H30+] phenol red indicator.

#1 - [H30+] L #2 - system will try & EHOO+J1 #3 - forward rxn is favoured

c. What observations would you see?

solution will become a more red colour

Let's analyze the following pH/titration curve

\	1.	Ι.	,
	¥	<	
	٨	1	•
	1	1	

Graph Information	Location on Graph	Analysis of Example
Sample Type	Indicated by the initial pH reading because no	weak acid
(weak)	titrant has been added yet	,
Titrant Type	Indicated by final pH reading because the solution	strong base
(Strong)	is just excess titrant	3,137
Equivalence Point*	The midway point on the vertical section of the	occurs at pH of 9
	graph	
Indicator Selection	The pH range of the indicator needs to include the pH of the equivalence point	phenolphthalein
Buffer Region	After a small amount of strong base is added, a buffer will form and the pH of the solution will remain somewhat constant even when more strong base is added	See graph

- Polyprotic substances can also be titrated with a strong acid/base and can produce titration/pH curves that can be analyzed in the same fashion/as the previous curve.
 - The only difference is that since a polyprotic substance can lose or gain more than one hydrogen ion (H⁺), the titration/pH curve will have more than one equivalence points/

• EXAMPLE:

from strong acid thrant

1st equivalence point: CO_{3}^{2-} + $H^{+}(a_{2}) \rightarrow HCO_{3}(a_{2})$ 2rd equivalence point: $HCO_{3}(a_{2}) + H^{+}(a_{2}) \rightarrow H_{2}(O_{3}(a_{2}))$

Graph Information	Location on Graph	Analysis of Example
Sample Type	Indicated by the initial pH reading because no	weak polyprotic
	titrant has been added yet	base
Titrant Type	Indicated by final pH reading because the solution	strong acid
	is just excess titrant	3
Equivalence Point*	The midway point on the vertical section of the	1st at PH of 8.5
	graph	and at pH of 4.1
		1st - thymol blue or phenolphthalein
Indicator Selection	The pH range of the indicator needs to include the	phenolphthalein
	pH of the equivalence point	2rd - bromocresol green
	A Comment of strong book is called a	or methyl orange
	After a small amount of strong base is added, a	
Buffer Region	buffer will form and the pH of the solution will	see graph
	remain somewhat constant even when more strong	
	base is added	

Practice Problems

Answer the next questions for all 3 titration curves.

- a) What is the type of sample that is being titrated (weak acid or weak base)?
- b) What is the type titrant (strong acid or strong base)?
- c) What is the pH at the equivalence point/s?
- d) What is an appropriate indicator to use for this titration for each equivalent point?
- e) Identify the regions on the graph where a buffer exists.

1.

2.

3.

Answers

1.

- a. Weak base
- b. Strong acid
- c. pH = 5
- d. bromocresol green or methyl red
- e. Buffer exists when a volume of titrant added is approximately 5-20 cm³

2.

- a. Weak polyprotic acid
- b. Strong base
- c. pH = 4 and pH = 9
- d. 1st Equivalence point use methyl red or bromocresol green. 2nd equivalence point use phenolphthalein
- e. Buffer exists when a volume of titrant added is 1-8 mL and 12-18 mL

3.

- a. Weak acid
- b. Strong base
- c. pH = 9
- d. Phenolphthalein
- e. Buffer exists when a volume of titrant added is 2-8 mL