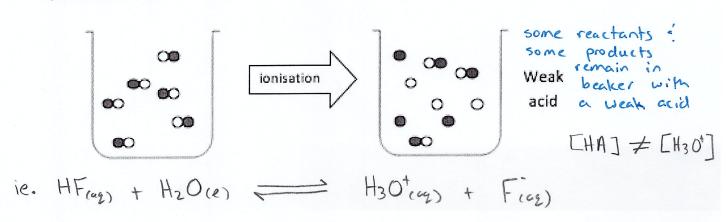

# Acid-Base Equilibrium Constants & Expressions


Strong acids are defined as proton donors that will <u>completely</u> ionize in water.
 This means that <u>all</u> reactants get consumed to produce lots of products.
 Therefore a strong acid <u>cannot form equilibrium</u> because the products are so heavily favoured.



Strong bases are defined as proton acceptors that will <u>completely</u> dissociate in water. This means that <u>all</u> reactants get consumed to produce products. Therefore a strong base <u>cannot form equilibrium</u> because the products are so heavily favoured.

★ ○ A strong base is an ionic compound that contains the hydroxide ion (OH⁻)

• <u>Weak acids</u> in water will establish equilibrium and <u>produce small amounts</u> of H<sup>+</sup>/H<sub>3</sub>O<sup>+</sup>. This means not much of the weak acid actually ionizes (ie. not many products form).



- Weak bases in water will establish equilibrium and <u>produce small amounts</u> of OH<sup>-</sup> ions. This means not much of the weak base actually dissociates (ie. not many products form).
- If very few products are produced with weak acids and weak bases, the equilibrium constant must be small for all weak acids and weak bases.
  - o The equilibrium constant for weak acids and weak bases is used to determine exactly how many H<sup>+</sup>/H<sub>3</sub>O<sup>+</sup> ions will be produced when a weak acid breaks down or how many OH<sup>-</sup> ions will be produced when a weak base breaks down

## **ACID IONIZATION EXPRESSIONS**

The general reaction written below represents the equilibrium for a weak acid

 The equilibrium expression can be written for any weak acid equilibrium based on the general reaction above and is known as the <u>acid ionization</u> <u>expression</u> or <u>K<sub>a</sub> expression</u>

 ICE tables can be applied to <u>weak</u> acids in equilibrium, but the general outcome is the same for all weak acids

$$HA(og) + H2O(e) = H3O(cog) + A(og)$$

$$I EHAJinihal - O + X + X$$

$$E EHAJinihal - X - X$$

: 
$$K_a = \frac{[H_30^{\dagger}][A^{-}]}{[HA]_{equilibrium}} = \frac{(\chi)(\chi)}{[HA]_{initial}}$$

but for weak acids, Ka is small so use approximation rule

[HA]intial - DC \simes [HA]initial

Recall other acid-base formulas that will also be used:

$$[H_3O^+_{(aq)}] = 10^{-pH}$$
 and  $pH = -log[H_3O^+_{(aq)}]$ 

\* memorize!

**EXAMPLES:** 

1. Methanoic acid,  $CHOOH_{(aq)}$ , is present in the sting of certain ants. What is the pH of a 0.25 mol/L solution of methanoic acid?

$$\begin{array}{cccc}
\hline
O & K_a = EH_3O^{\dagger}J^2 & \longrightarrow & EH_3O^{\dagger}J = \int K_a EHAJ \\
\hline
EH_3O^{\dagger}J = \int (1.8 \times 10^{-4})(0.25) \\
EH_3O^{\dagger}J = 6.708... \times 10^{-3} \text{ mol} 1/L
\end{array}$$

only 2 sig. figs.

2. Propanoic acid, CH<sub>3</sub>CH<sub>2</sub>COOH<sub>(aq)</sub>, is a weak monoprotic acid that is used to inhibit mould formation in bread. A student prepared a 0.10 mol/L solution of propanoic acid and found the pH was 2.96. What is the acid ionization constant for propanoic acid?

$$EH_3O^{\dagger}$$

$$EH_3O^{\dagger}$$

$$EH_3O^{\dagger}$$

$$O$$

# **Practice Problems**

- 1. Write the equilibrium expression for each acid ionizing in an aqueous solution.
  - a. nitrous acid, HNO<sub>2(aq)</sub>
  - b. benzoic acid,  $C_6H_5COOH_{(aq)}$
  - c. carbonic acid, H<sub>2</sub>CO<sub>3(aq)</sub>
- 2. Phenol,  $C_6H_6O_{(aq)}$ , is a weak monoprotic acid used as a disinfectant. The  $K_a$  expression is  $K_a = \frac{\left[C_6H_5O^-\right]\left[H_3O^+\right]}{\left[C_6H_6O\right]}$ . Write the ionization reaction for phenol in an aqueous solution.
- 3. Calculate the pH of a sample of vinegar that contains 0.83mol/L ethanoic acid.
- 4. Hypochlorous acid,  $HOCl_{(aq)}$  is used to make bleach. A chemist finds that a 0.40mol/L solution of  $HOCl_{(aq)}$  will ionize and produce  $1.08x10^{-4}$  mol/L of  $OCl_{(aq)}$ . What is the  $K_a$  for the acid?
- 5. Hexanoic acid, commonly known as caproic acid,  $C_5H_{11}COOH_{(s)}$ , occurs naturally in coconut and palm oil. It is a weak monoprotic acid, with  $K_a = 1.3 \times 10^{-5}$ . A certain aqueous solution of hexanoic acid has a pH of 2.94. What was the initial concentration of the hexanoic acid solution?
- 6. Lactic acid is a monoprotic acid produced by muscle activity. It is also produced in milk by the action of bacteria. What is the pH of a 0.16mol/L solution of lactic acid?
- 7. What is the acid ionization constant for gallic acid if a 0.68mol/L solution has a pH of 2.29?

# **Practice Problem: Answers**

1.

$$a. \quad K_a = \frac{\left[NO_2^{-1} \int H_3 O^+\right]}{\left[HNO_2\right]}$$

b. 
$$K_a = \frac{\left[C_6 H_5 COO^{-1} H_3 O^{+1}\right]}{\left[C_6 H_5 COOH\right]}$$

c. 
$$K_{a1} = \frac{\left[HCO_3^{-1} \int_3^{-1} H_3O^+\right]}{\left[H_2CO_3^{-1}\right]}$$
 and  $K_{a2} = \frac{\left[CO_3^{-2} \int_3^{-1} H_3O^+\right]}{\left[HCO_3^{-1}\right]}$ 

and 
$$K_{a2} = \frac{[CO_3^{2-}]H_3O^+}{[HCO_3^{-}]}$$

$$2. \quad C_6 H_6 O_{(aq)} + H_2 O_{(l)} \Leftrightarrow C_6 H_5 O^-_{(aq)} + H_3 O^+_{(aq)}$$

- 3. 2.41
- 4. 2.9x10<sup>-8</sup>
- 5. 0.10 mol/L
- 6. 2.32
- 7. 3.9x10<sup>-5</sup>

## BASE EQUILIBRIUM EXPRESSIONS

• The general reaction written below represents the equilibrium for a weak base

 The equilibrium expression can be written for any weak base equilibrium based on the general reaction above and is known as the <u>base equilibrium</u> <u>expression</u> or <u>K<sub>b</sub> expression</u>

• ICE tables can be applied to <u>weak</u> bases in equilibrium, but the general outcome is the same for all weak bases

B cays + 
$$H2O(e)$$
  $\Longrightarrow$   $HB_{cay}$  +  $OH_{cay}$ )

 $T \quad [B]_{inital} \quad - \quad O$ 
 $C \quad [B]_{inital} \quad -\chi \quad +\chi \quad +\chi$ 
 $E \quad [B]_{inital} \quad -\chi \quad -\chi \quad \chi$ 

but for weak bases, Kb will be small, in use approximation rule [13] in the - 2 ~ [8] in the

$$K_b = \frac{(2)(2)}{EBJ_{in,tal}}$$
 where  $z = EOH^-J = EHB^*J$ 

- Calculations are need to relate acidic information to basic information (because as acidic properties increase, basic properties decrease and vice versa)
  - The relationship between pH and pOH is

$$14 = pOH + pH$$
and recall  $pOH = -log[OH_{(aq)}]$  &  $[OH_{(aq)}] = 10^{-pOH}$ 

Water can ionization and create an equilibrium reaction shown below

$$H_2O(e)$$
  $=$   $H_{cog}$  +  $OH_{cog}$ )

 $K_w = EH^+]EOH^-]$  where  $K_w = 1.0 \times 10^{-14}$  at 25°C

The state of the state o

o There is a relationship between the  $K_a$  and  $K_b$  for a <u>conjugate acid-base</u> <u>pair</u>

#### **EXAMPLES**:

1. The characteristic bitter taste of tonic water is due to the addition of quinine,  $C_{20}H_{24}N_2O_{2(s)}$ , a naturally occurring, white crystalline compound. It is also used to treat malaria. The base equilibrium constant,  $K_b$ , for quinine is  $3.3 \times 10^{-6}$ . What is the hydroxide ion concentration of a  $3.6 \times 10^{-8}$  mol/L solution of quinine?

$$K_{b} = 3.3 \times 10^{-6}$$
 $K_{b} = EOH'J^{2}$  approximation

 $EBJ_{initial} = 3.6 \times 10^{-2} \text{ mol}/L$ 
 $EOH'J = ?$ 
 $EOH'J = J(8)J_{initial}$ 
 $EOH'J = J(3.5 \times 10^{-6})(3.6 \times 10^{-2})$ 
 $EOH'J = 1.1 \times 10^{-4} \text{ mol}/L$ 

2. An aqueous solution of ammonia has a pOH of 3.15. What is the concentration of the ammonia solution?

$$K_{a} = 5.6 \times 10^{-10} \text{ for NH}_{4}^{+} = \frac{K_{w}}{6000} = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-10}} = 1.7857... \times 10^{-5}$$

from data book

(2) 
$$K_b = \frac{COH \cdot J^2}{CBJ_{initial}}$$
  $\Longrightarrow$   $CBJ_{initial} = \frac{COH \cdot J^2}{K_b}$ 

[B]inhal = 
$$(7.07945...\times0^{-4})^2 = 0.02806...$$

3. One of the uses for aniline, C<sub>6</sub>H<sub>5</sub>NH<sub>2(l)</sub>, is in the manufacture of dyes. Aniline is soluble in water and acts as a weak base. When a 0.054mol/L solution of aniline was prepared, the pH was found to be 8.68. Calculate the base equilibrium & basic constant for aniline.

Kb = ?

assume approximation rule is good!

(2) [OH-] = 10-100H

\* going to go with green path \*

- (1) pOH + pH = 14 => pOH = 14-pH pot = 14-8.68 = 5.32
- 2 COH-J=10-PH = 10-5.32 = 4.7863 ... ×10-6 moll
- (3)  $K_0 = \frac{[OH-J^2]}{[BJ]_{initial}} = \frac{(4.7863...\times 10^{-6})^2}{(0.054)} = 4.2423...\times 10^{-10}$

Ko = 4.2 ×10-10