Acid-Base Equilibrium

- Acid-base reactions are also reversible reaction, so they have the ability to form an equilibrium
- Recall Arrhenius's modified definition of acids and bases

- o Acids are species that produce H⁺/H₃O⁺ ions in a reaction and have a pH lower than 7
 - Bases are species that produce OH ions in a reaction and have a pH higher than 7
- This definition of acids and bases is still true and applicable, but it is a limited.
- Bronsted and Lowry extended Arrenhius definition of an acid and base to overcome its limitations

Bronsted-Lowry definition of acids and bases:

a list of common acids i bases are found on pg. 8-9 of data booklet

- An <u>acid</u> is a substance that produces a hydrogen ion (H⁺)/hydronium ion (H₃O⁺) and is therefore called a <u>proton</u> donor. At is a proton!
- A <u>base</u> is a substance that can accept a hydrogen ion and is therefore also called a proton acceptor.
- In order for an acid to able to donate a proton, there needs to be a base present to accept that proton (and vice versa). Therefore, an acid always needs a base to react with (and vice versa).
- Since most acids and bases are dissolved in water and water has the ability to accept and donate a proton, the acidic and basic properties of chemicals can be explained by a reaction with water.

EXAMPLES:

- 1. Write out the acid-base reactions for
 - a. HCN(aq) acting as an acid

b. NH_{3(aq)} acting as a base

2. Write out the acid-base equilibrium reaction when potassium nitrite is mixed with hypoclorous acid (HOCI).

- When chemicals only differ from each other by the presence or absence of a single hydrogen ion/proton, we call the chemicals a <u>conjugate acid-base pair</u>
 - <u>Every</u> acid has a conjugate base and every base has a conjugate acid
 - st $_{\circ}$ The actual acid/base will always be on the reactant side and the conjugate will always be on the product side

EXAMPLE: Hydrogen bromide is a gas at room temperature, but is soluble in water to form hydrobromic acid. Identify the conjugate base for hydrobromic acid. Identify the other conjugate acid-base pair that is involved in the reaction.

Acids and bases have different strengths

values

- Some acids donate protons more easily (stronger acids) and some bases accept protons more easily (stronger bases)
- Stronger acids are found at the top left hand side of the table on pg. 8-9 of data booklet and decrease in strength as you go down
- Stronger bases are found at the bottom right hand side of the table on pg. 8-9 of data booklet and decrease as you go up
 - If multiple acids and bases are present in a container, the reaction will be defined by the strongest acid reacting with the strongest base
 - * In an acid-base reaction, the reaction will favour the side of the reaction that contains the weaker acid or base

EXAMPLE: Predict the direction in which the following reaction will proceed.

a.
$$SO_4^{2^-}(aq) + CH_3COOH_{(aq)} \leftrightarrow HSO_4^-(aq) + CH_3COO_{(aq)}$$

base acid conjugate base intercept favoured

weaker base stronger stronger base

b. $H_2PO_4^-(aq) + NH_3(aq) \leftrightarrow NH_4^+(aq) + HPO_4^{2^-}(aq)$

acid base conjugate conjugate in product

stronger stronger weaker weaker

acid base acid base

Now try pg. 687 #1, 2, 4 & pg. 690 #8 & Practice Problems

Practice Problems

- 1. Write the acid-base equilibrium equation for each of the following reactions. State whether the reactant or products are favoured.
 - a. Carbonic acid is combined with ammonia (NH₃).
 - b. Nitrous acid (HNO_{2(aq)}).
 - c. Sodium cyanide is dissolved in water.
 - d. Copper (II) sulphate is dissolved in hydrofluoric acid.
- 2. For each of the following reactions, identify each substance as a Brønsted-Lowry acid, Brønsted-Lowry base, a conjugate acid, or conjugate base.

a. NH_4^+ (aq) + CN^- (aq) \rightarrow HCN(aq) $NH_3(aq)$

b. $(CH_3)_3N(aq) + H_2O(I) \rightarrow (CH_3)_3NH^+(aq) + OH^-(aq)$

Solutions

1.

a.
$$H_2CO_{3(aq)} + NH_{3(aq)} \leftrightarrow HCO_{3(aq)} + HN_{4(aq)}^{+}$$
 products favoured b. $HNO_{2(aq)} + H_2O_{(l)} \leftrightarrow NO_{2(aq)} + H_3O_{(aq)}^{+}$ reactants favoured c. $CN_{(aq)}^{-} + H_2O_{(l)} \leftrightarrow HCN_{(aq)} + OH_{(aq)}^{-}$ reactants favoured d. $SO_4^{2^-}{}_{(aq)} + HF_{(aq)} \leftrightarrow HSO_4^{-}{}_{(aq)} + F_{(aq)}^{-}$ reactants favoured

2.

a.	NH₄ ⁺ (aq) acid	+	CN ⁻ (aq) base	\rightarrow	HCN(aq) conjugate		NH ₃ (aq) conjugate base
h	(CH ₃) ₃ N(aq)		H ₂ O(I)	_	acid (CH₃)₃NH ⁺ (aq)	+	OH ⁻ (aq)
b.	base		acid	7	conjugate acid		conjugate base