ICE Tables

- If we place only reactants in a container, the system will reach an equilibrium
 Therefore, we need to be able to calculate the <u>equilibrium</u> concentrations based on the <u>initial</u> concentrations
- ICE tables are a convenient way to organize and calculate the changes in the concentrations of products and reactants for a system that reaches equilibrium
 - "ICE" stands for the <u>i</u>nitial concentration, <u>c</u>hange in concentration, and <u>e</u>quilibrium concentration of all chemicals involved in a reaction system arrange into a table format
 - 💥 o ICE table only contain concentration values

EXAMPLES:

1. Consider the reaction for the decomposition of hydrogen iodine at 448°C. The initial concentration of HI_(g) was 1.00 mmol/L. Once an equilibrium was established, the concentration of HI_(g) was measured to be 0.078 mmol/L. Calculate the equilibrium constant (K_c).

reed equilibrium concentrations :. ICE table!

Set table up * table set up in mmol/L * with variables

First!

$$K_c = [H_2][I_2] = (x)(x) = \frac{x^2}{(1.00-2x)^2}$$

but
$$[HI]_{eyu} = 1.00-2x = 0.078$$

 $1.00-0.078 = 2x$
 $0.922 = 2x$
 $0.461 = 2x$

$$K_{c} = \frac{(0.461)^2}{(0.078)^2} = 34.9311...$$

2. Nitrogen dioxide can break down into nitrogen monoxide and oxygen. The equilibrium constant for this reaction is Kc = 0.40. If the equilibrium concentration of $NO_{2(g)}$ is 0.20 mol/L and the equilibrium concentration of $NO_{(g)}$ is 1.0 mol/L, what is the equilibrium concentration of $O_{2(g)}$?

$$K_{c} = \frac{[O_{2}][NO]^{2}}{[NO_{2}]^{2}} \Rightarrow [O_{2}] = \frac{K_{c}[NO_{2}]^{2}}{[NO_{2}]^{2}}$$

$$[0_2] = (0.40)(0.20)^2 = 0.016$$

3. Ammonia gas $(NH_{3(g)})$ is produced in industrial amounts for use in the production of fertilizers. The most well-known industrial process to produce ammonia gas in large quantities is using the Haber-Bosch process as shown below.

$$N_{2(g)} \ + \ 3H_{2(g)} \ \leftrightarrow \ 2NH_{3(g)}$$

The equilibrium constant for the Haber-Bosch process is 0.469. If 20.0 mol of $N_{2(g)}$ and 75.0 mol of $H_{2(g)}$ are placed in a 5.00L reaction vessel and 33.0 mol of ammonia is present at equilibrium, what is the equilibrium concentration of

hydrogen gas?

* ICE table needs to be set up with concentration values!

$$C = \frac{n}{v}$$
 : $[N_2] = \frac{20.0 \, \text{mol}}{5.0 \, \text{L}} = \frac{4.00 \, \text{mol/L}}{5.0 \, \text{L}}$

but [NH3] equil. = $\frac{33.0 \text{ mol}}{5.0 \text{ L}} = \frac{6.6 \text{ mol/L}}{5.0 \text{ L}} = \frac{22}{3.3 \text{ mol/L}}$

[[Hz]equil = 5. Imo 1/L

Practice Problems

1. Consider the equilibrium system:

$$CO_{(g)}$$
 + $H_2O_{(g)}$ \leftrightarrow $CO_{2(g)}$ + $H_{2(g)}$

Initially, 0.75 mol of water and 0.60 mol of carbon monoxide are placed in a 3.0L reaction vessel. At equilibrium, 0.30 mol of carbon dioxide is present. Calculate the equilibrium constant for the system. **[0.67]**

2. Consider the equilibrium system:

$$H_{2(g)}$$
 + $Br_{2(g)} \leftrightarrow 2HBr_{(g)}$

Initially, 0.25 mol of hydrogen and 0.25 mol of bromine are place in a 500mL reaction vessel. The equilibrium constant for the reaction is 50. Calculate the equilibrium concentration of bromine when the equilibrium concentration of hydrogen bromide is 0.78mol/L. **[0.11mol/L]**

3. Consider the equilibrium system:

$$2 \text{ NO}_{(g)} + \text{CI}_{2(g)} \leftrightarrow 2 \text{ NOCI}_{(g)}$$

Initially, 5.0 mol of $NO_{(g)}$ and 5.0 mol of $Cl_{2(g)}$ were added to a 2.0 L container. As a result of the reaction, the equilibrium concentration of $NOCl_{(g)}$ became 0.96 mol/L. Determine the value of the equilibrium constant (K_c) for this reaction. **[0.19]**

End of Practice Problems

4. Nitrogen oxides from exhaust gases are a serious pollution problem. An environmental chemist is studying the following equilibrium reaction:

$$N_{2(g)} \ + \ O_{2(g)} \ \leftrightarrow \ 2NO_{(g)}$$

At a temperature of the exhaust gases from a particular engine, the value of Kc is 4.2x10⁻⁸. The chemist puts 0.17 mol of nitrogen and 0.076 mol of oxygen in a rigid 2.0L cylinder. What is the concentration of nitrogen monoxide in the mixture at equilibrium?

TCE table!

* first need concentration values!

$$C = \frac{N}{V}$$
 : $C_{N_2} = \frac{0.17mol}{2.0L} = 0.085mol/L$

$$K_c = [NO]^2 = (22)^2$$

$$[N_2][O_2] = (0.095-2)(0.039-2)$$
[Foiled /expanded]

$$4.2 \times 10^{-8} = 4x^{2}$$

$$0.00323 - 0.123x + x^{2}$$

a quadratic equation!

- Some equilibrium calculations can become very complex and time consuming to solve
- The previous example resulted in a quadratic equation which can be solved using the quadratic equation or by graphing
- However, for this example and ones that are more complex than a quadratic equation, we can use the <u>approximation rule</u>
- ★ The approximation rule states that if K_c x 1000 is less than the initial concentration of all reactants, then we can assume that the initial concentration of the reactants is the equilibrium concentration as well because K_c is so small which means hardly any reactants are being consumed
 - Now let's finish our last example...

-first check to see if the approximation rule can apply
$$4.2\times10^{-8}\times1000 = 4.2\times10^{-5} < 0.085\,\text{mod/L} = 0.038\,\text{mod/L}$$
i. use approximation rule!

$$\frac{4x^2}{(0.085-2)(0.038-2)}$$

$$\frac{6.085-2}{0.038-2} \approx 0.085$$

$$0.038-2 \approx 0.038$$

$$4.2 \times 10^{-8} = 4 \times^{2}$$

$$(0.085)(0.038)$$

$$4.2 \times 10^{-8} = \frac{42^{2}}{0.00323} = 1.3566 \times 10^{-10} = 42^{2}$$

$$3.3915 \times 10^{-11} = 2^{2}$$

$$5.8236... \times 10^{-6} = 2$$