Biological Effects of Radiation

- All types radiation (alpha, beta, gamma and EMR) have hazardous effects on biological tissue
 - When X-rays are requires, patients are shielded with lead vests
 - Radiation was the devastating aftermath of such events including the Chernobyl meltdown and the WWII atomic bombing of Japanese cities
- The level of danger of exposure to radiation depends on several variables:
 - 1. The amount of energy of the radiation
 - ★ The more <u>energy</u> the radiation has, the more <u>hazardous</u> it is
 - High energy particles or photons can cause genetic damage by altering DNA and lead to development of cancers and harmful mutations
 - 2. Amount of exposure to radiation
 - More exposure to or large doses of <u>harmful</u> radiation increases the amount of energy being absorbed by biological tissue, therefore making it more hazardous
 - Activity: the amount of radiation produced in a given period of time. <u>Activity</u> dependents on the stability and amount of the radioactive substance.
 - ★ Small amounts of harmful radiation vs. large amounts of low risk radiation
 - 3. Ability to ionize biological tissue
 - <u>lonization</u> occurs when an atom losses an electron/(s)
 - Cells can be damaged or killed when exposed to ionizing radiation, resulting in radiation sickness
- Safety can be improved when working with radioactive material or high energy EMR by
 - 1. Decreasing exposure time
 - 2. Increasing distance between people and the radioactive material
 - 3. Increasing the shielding used

RADIATION HAZARDS

Type of Radiation	Nature of Radiation	Penetrating Ability	Ionization Ability	Hazard
alpha	Helium nucleus	- Paper - Cannot penetrate skin	high	low, unless ingested
beta	High speed electron/positron	- cardboard - penetrates about 1 cm into the body	moderate to low	moderate
gamma	High energy photon	- metal - penetrates right through the body	low	high

EXAMPLE: Ultraviolet radiation is a type of ionizing radiation. Is it also a type of nuclear radiation? Explain.

No. Ultraviolet light is not one of the three types of nuclear radiation and is therefore not produced through a nuclear process. Ultraviolet light is produced when electrons within an atom make a transition to a lower energy level.