Summary of Organic Compounds

SUMMARY OF ORGANIC COMPOUNDS CLASSIFIED BY FUNCTIONAL GROUP

	Functional Group	Name	Suffix	
ic. CuH(zn+z)	- c- c-	alkane	-ane	* also know:
Cn Han) ->	_c=c<	alkene	-ene	- aliphatic VS apomatic
	-c≡c-	alkyne	-yne	aromatic
CnH(2n-2)	-¢-0H	alcohol	-ol	- saturated vs. unsaturated
	- C - X where X is a halogen	alkyl halide	-ane (alkyl halides are alkanes)	unsaturated
	СОН	carboxylic acid	-oic acid	
	0		-oate	

ester

SUMMARY OF ORGANIC COMPOUNDS BASED ON BOILING POINTS

where R' is any hydrocarbon other than hydrogen

Compound	Boiling Point (°C)		
alkenes	lowest		
alkane	^		
alkyne			
ester			
alcohol			
carboxylic acid	highest		

* memorite!

table based on organic molecules with the same amount of carbon atoms

 Boiling points of simple cyclic compounds are similar to those of aliphatic hydrocarbons having the same number of carbons

* • When comparing organic compounds within the same functional group, the longer the hydrocarbon chain, the greater the boiling point (due to more London Dispersion forces)

BOILING POINTS OF ORGANIC MOLECULES IN A HOMOLOGOUS SERIES

increases

Alkanes	Boiling Point (°C)	Alkenes	Boiling Point (°C)	Alkynes	Boiling Point (°C)
ethane	-89	ethene	-104	ethyne	-84
propane	-42	propene	-47	propyne	-23
butane	-0.5	butene	-6.3	butyne	8.1
pentane	36	pentene	30	pentyne	39
hexane	69	hexene	63	hexyne	71

increases

nonogolous

nomologous

- · When comparing properties of organic molecules to other organic molecules, it is sometimes useful to compare molecules that contain the same functional group.
 - * o A homologous series is a group of molecules that have the same general formula (ie. have the same functional group), but only differ from one another in the length of the carbon chain.
 - o An example of a homologous series would be CH₃(COOH), C₂H₅(COOH), $C_3H_7(COOH)$, and $C_4H_9(COOH)$, $C_5H_1(COOH)$
 - o Another example would be CH₄, C₂H₆, C₃H₆, and C₄H₁o C₅ ℍ₁₂

SUMMARY OF THE SOLUBILITY OF ORGANIC COMPOUNDS

Compound	Soluble in Water	Polar or non-polar	
alkenes	No	Non-polar	
alkane	No	Non-polar	
alkyne	No	Non-polar	
ester	Yes, if 4 carbons or less	Somewhat polar	
alcohol	Yes	Polar	
carboxylic acid	Yes	Polar	

When comparing organic compounds within the same functional group, the longer the hydrocarbon chain, the less soluble in water the molecule becomes.