The Photoelectric Effect - Graphing

Recall some of the major observations of the photoelectric effect

X

Manipulated Variable	Responding Variable
LIGHT	ELECTRONS
frequency of incident light	kinetic energy of ejected electrons
If frequency of light increases	 Kinetic energy of ejected electrons increases
intensity/brightness of incident light	number of eject electrons (ie. current)
If intensity of light increases	 Number of electrons emitted (ie. current) will increase

These same observations can be represented graphical

EXAMPLES

Kinetic Energy of Electrons vs. Intensity of Incident Light

(frequency of light is greater than threshold frequency)

Kinetic Energy of Electrons vs. Intensity of Incident Light

(frequency of light is less than threshold frequency)

Current vs. Wavelength of Incident Light

 However, some graphs for the photoelectric effect require more analysis and calculations than just simply making general conclusions based on trends EXAMPLE: In a photoelectric experiment, the maximum kinetic energy of the emitted electrons was measured based on the frequency of the lighting hitting a metal surface. The data was collected and complied into a graph as shown below.

- 1. Using linear regression, analyze the meaning of the graph.
 - a. What is the significance/meaning of the slope?
 - b. What is the significance/meaning of the y-intercept?
 - c. What is the significance/meaning of the x-intercept?

$$x = f$$
 $y = Ex$
 $E := Eout$
 $E := Eout$

2. Use your graph to determine the work function of the metal surface.

$$-W = b = -2.20 \text{ eV}$$

:: $W = 2.20 \text{ eV}$