The Ideal Gas Law

- Recall that molar volume is the volume occupied by 1 mole of gas, but is restricted to set conditions for pressure and temperature
- The Ideal Gas Law allows us to calculate the amount of gas molecules contained within a certain volume at a certain temperature and pressure

The formula for the ideal gas law is as follows:

where

P = pressure in kPa

T = temperature in **K**These units are a must!

These units are a must!

EXAMPLES:

1. A rigid steel vessel with a volume of 2.0L is filled with nitrogen gas to a pressure of 20000kPa at 27.0°C. How many moles of nitrogen gas are in the steel vessel?

$$V = 2.0L$$

 $P = 20000 \ Pa$
 $T = 27.0 \ C + 273.15$
 $T = 300.15 \ K$
 $N = ?$

$$PV = NRT$$

$$N = \frac{PV}{RT}$$

$$N = (20000 \text{ kPa})(2.0\text{ L})$$

$$(8.314)(300.15 \text{ K})$$

$$N = 16.029...mol$$

$$N = 16 mol$$

2. What is the volume of 10.8mol of oxygen gas at 1.30atm and 15.5°C?

$$M = \frac{1}{3}$$

4. What is the pressure exerted by 1.55g of methane gas, CH_{4(g)}, if it occupies a volume of 200mL at 25.0°C?

$$P = ?$$
 $M = 1.55g$
 $V = 200 \text{pL} \times \left(\frac{10^{-3}}{1 \text{pl}}\right)$
 $V = 0.200 \text{L}$
 $T = 25.0 ^{\circ}\text{C} + 273.15$
 $T = 298.15 \text{ K}$

$$\begin{array}{ccc}
\hline
M &= M_N & \longrightarrow & \underline{M} &= N \\
M &= N \\
N &= \frac{1.559}{16.059/mol} &= 0.0965732...mol
\end{array}$$

②
$$PV=NRT$$
 $\rightarrow P=NRT$
 $P=(0.0965732...nol)(8.314)(298.15K)$
 $(0.200L)$

Practice Problems

- 1. What is the pressure of hydrogen gas when 3.25 mol occupies a volume of 67.5L at a temperature of 295K?
- 2. What is the volume of 5.65 mol of helium gas at 98kPa and a temperature of 18.0°C?
- 3. How many moles of ammonia are present in a 250mL container at 25.0°C and 75mmHg?
- 4. Find the volume of 1.87g of methane gas (CH₄) at 20.0°C and 780mmHg.
- 5. Find the Celsius temperature of nitrogen gas if a 5.60g samples occupies 2400mL at 3.00atm.
- 6. A sample of gas with a mass of 0.571g has a volume of 375mL at 99.0kPa and 23.8°C. Find the molar mass of the gas.

Answers:

1. 118 kPa

4. 2.73 L

2. 1.4x10² L

5. 166 °C

3. 1.01x10⁻³ mol

6. 38.0g/mol