Review of Molar Mass

- Molar mass (M) is the mass of 1 mole of chemical In other words, the mass of 6.022x10²³ molecules of a particular chemical
- Molar mass is used to relate the number of moles of a particular chemical to the mass of that chemical through the following equation

where

m is the mass of a chemical (g) M is the molar mass of a chemical (g/mol) n is the moles (mol)

EXAMPLES:

1. Calculate the number of moles in 6.55 g of NaHCO_{3(s)}.

$$M = M_N \rightarrow M = N$$

$$M = N$$

$$M = N$$

$$+ 1.01$$

$$+ 12.01$$

$$+ 16.00 (x3)$$

$$84.01 g/mol = M$$

2. What is the mass of 0.155 mol of calcium phosphate?

$$M = M_{n}$$
 $M = (310.18g/mel)(0.155mol)$
 $M = (48.0779 g)$
 $M = 48.1g$
 $M = 48.1g$

3. How many moles are in 0.558 kg of dinitrogen dioxide?

$$n=?$$
 $M = 0.558 \text{ kg} \times \left(\frac{10^3}{1 \text{ k}}\right)$
 $M = 558 \text{ g}$
 $M = 558 \text{ g}$
 $N_2 O_2$
 $N_2 O_2$
 $N_3 O_2$
 $N_4 O_1 (x_2)$
 $N_4 O_2 (x_2)$
 $N_5 O_2 (x_2)$
 $N_6 O_2 O_2 O_2 (x_3)$

$$M = M_0 \longrightarrow \frac{M}{M} = 0$$

$$n = \frac{558g}{60.02glmol} = 9.29690...mol$$

W= WU

Practice Problems

1. Complete the following chart.

Name	Formula	Molar Mass (g/mol)	Mass (g)	Moles (mol)
sodium chloride	NaCl	58.44g/mol	m = 11.6889 $m = 1129$	0.20 mol
sulphur trioxide	503	80.07g/mol	1.23 g	0.0154mol
iron(III) hydroxide	Fe(OH)3	106.88 glmol	10.39	9.64 x10 ⁻² mol
nitrogen	Nz	28.02g/mol	65.1 g	2.32 mol
calcium nitrate	Ca(NO3)2	164. lOg/mol	8.45 g	0.0515 mol
potassium dichromate	K2C1207	294.20g/mol	4069	1.38 mol