Redox Stoichiometry

- <u>Stoichiometry</u> uses calculations to compare the quantities of a reactant or product to another chemical involved in a chemical reaction.
- In order to perform stoichiometric calculations, it is mandatory to have a balanced chemical reaction. Creating a balanced reaction (redox reactions for chemistry 30) is ultimately the first step for a stoichiometric calculation
 - Once a balanced reaction is obtained, follow the next steps to calculate a quantity of a chemical based off the information of another chemical involved in the reaction
 - Step 1: Calculate the of moles of the chemical you know the most information about
 - Step 2: Multiply the moles of the chemical in step 1 by the "<u>want over</u> <u>have</u>" ratio to find the moles of the chemical you are trying to find the quantity of.
 - Step 3: Solve for the unknown (ie. mass, concentration, etc.)
 - o Remember that when working with solids, use the formula m=Mn and when working with solutions, use the formula $C=\frac{n}{V}$

EXAMPLES:

1. In a reaction between copper metal and aqueous iron(III) chloride, $Fe^{3+}_{(aq)}$ is reduced to $Fe^{2+}_{(aq)}$, while $Cu_{(s)}$ is oxidized to $Cu^{2+}_{(aq)}$. Determine the mass of $Cu_{(s)}$ required to react with 50 mL of 1.3 mol/L $FeCl_{3(aq)}$.

2. The un-balance equation for the reaction between bromine, Br_{2(aq)}, and aqueous iodate ion, IO_3^- _(aq), in acidic solution is $Br_{2(aq)} + IO_3^-$ _(aq) $\rightarrow Br^-$ _(aq) + IO_4^- _(aq). What volume of 0.788 mol/L KIO_{3(aq)} will react with 4.00 g Br_{2(aq)}?

$$0 = \frac{M}{M} = \frac{4.009}{159.8051m1}$$

$$0 = \frac{M}{M} = \frac{4.009}{159.8051m1}$$

$$0 = 0.02503.001$$

$$V = \frac{0.02503 \text{ mol}}{0.788 \text{ mol/L}}$$

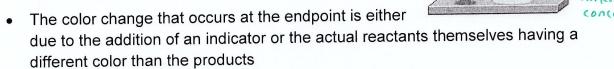
$$N_{20} = \frac{0.02503 \text{ mol}}{0.788 \text{ mol/L}}$$

$$N_{20} = \frac{0.02503 \text{ mol/L}}{0.02503 \text{ mol/L}}$$

 Titration is a laboratory process that is used in combination with stoichiometry to determine the quantity of an unknown sample.

Buret

Erlenmeyer flask


& titrant with known

sample with

 In a titration, the <u>titrant</u> is the chemical in the buret with a known concentration. The sample with the unknown concentration is placed in the Erlenmeyer flask.

> The titrant is slowly added to the sample until the <u>endpoint</u> is reached. The <u>endpoint</u> is indicated by a sudden color change of the solution in the Erlenmeyer flask.

> The endpoint is usually an indication that the <u>equivalence point</u> has been reached; this occurs when the moles of the titrant added is equal to the moles of chemical in the sample.

Strong OA swhich would be a titrant. Half-rxn just copied from Pg. 7 of date book, 3. A 25.00 mL sample of solution containing iron (II) ions was titrated with a 0.02043mol/L potassium dichromate solution to determine the concentration of iron (II) in the sample. The table below shows the data collected from the titration lab.

Titration of 25.00mL of acidic Fe2+(aq) with 0.02043 mol/L K2Cr2O7(aq) 1 2 Trail 53.7 64.0 62.1 76.8 28.3

Initial burette reading (mL) 16.9 26.5 41.5 Final burette reading (mL) 35. 7 35.3 36. 8 Volume of $K_2Cr_2O_{7(aq)}$ (mL) 35.6

om. Hed ble how fer off! · Average volume 0+ K2 C12 07 added is 35.53 mL

What is the concentration of iron (II) ions in the original, acidic sample?

- first need a balanced rxn, so make a list of all Chemicals a identify the SOA & SRA; the strongest agents will determine the overall redox rxn!

Fe 2021, K2 C12 O7 (62), H'(42), H2 O(e) 2 Ktuz) C(207(69) 504

(x6)
$$6 Fe^{2+} \rightarrow 6 Fe^{3+} (az) + 6 fe^{-}$$
 } copied from $Cr_2O_{7(az)} + 14 H_{(az)}^+ + 6 fe^{-} \rightarrow 2 Cr_{(az)}^{3+} + 7 H_2O_{(e)}$ } data book P5. 7

Cr207119 + 14Hing + 6 Fecus -> 6 Fe 3+ cas) + 2 Cr 3+ 7 H2 Oce)

V=35.53mL

V=0.03553 mL

C = 0.62043 rol/6

Dn=Cv

n= (0.02043m1/6)(0.03553mL)

n=7.25946 x10-3 mol

> V= 25.00mL = 0.002500L

C=0.1742 mol/L

Practice Problems

- 1. Silver reacts in a single replacement reaction with 75 mL of 0.25 mol/L AuCl_{3(aq)}. What mass of reducing agent is used? **[6.07g]**
- 2. The reaction shown below occurs in acid solution. Balance the equation and calculate the mass of methanol (CH₃OH) that will react completely with 3.33L of 0.150mol/L MnO₄ (aq). [20.0g]

$$CH_3OH_{(aq)} + MnO_4^-_{(aq)} \rightarrow HCOOH_{(aq)} + Mn^{2+}_{(aq)}$$

- 3. An acidified solution of permanganate ion, $MnO_4^{-}_{(aq)}$, reacts with aqueous chloride ion, $Cl_{(aq)}^{-}$.
 - a. In the reaction, $MnO_4^{-}_{(aq)}$ oxidizes the chloride ions, while the manganese is reduced to $Mn^{2^+}_{(aq)}$. Write the two balanced half-reactions that are involved in the reaction.
 - b. Balance the overall redox reaction.
 - c. A 100.0 mL sample of NaCl_(aq) is reacted with 21.0 mL of 1.30 mol/L KMnO_{4(aq)}. What is the concentration of NaCl_(aq)? **[1.37 mol/L]**
- 4. Use the following titration data collected in a lab to determine the concentration of tin (II) ions in a solution prepared for research on toothpaste. [0.337mol/L]

Titration of 10.00mL of acidic $\mathrm{Sn}^{2^{+}}_{(aq)}$ with 0.0832 mol/L KMnO_{4(aq)}

Trail	1	2	3
Initial burette reading (mL)	50.2	33.9	17.8
Final burette reading (mL)	33.9	17.8	1.6
Volume of KMnO ₄ (mL)			