Balancing Redox Reactions with Oxidation Numbers

- So far we know how to balance redox reactions using the half-reaction method
 - This method works good in acidic conditions and for simple half reactions (ie. metal/metal ions and non-metals/ non-metal ions)
- We can also use oxidation numbers to balance redox reactions as well
- main reason to use this nethod of balancing.
- We use this method of balancing, when we need to know how many electrons are transferred per atom, per molecule, or per reaction
- To balance a redox reaction using oxidation numbers, follow these steps:
 - Step 1: Assign oxidation numbers to all elements and identify the elements that have a change in oxidation numbers.
- # e = initial
- Step 2: Determine the number of electrons transferred <u>per atom</u> by calculating the difference between the final oxidation number and the initial oxidation number of the atom undergoing the change.
- Step 3: Determine the number of electrons transferred <u>per</u>
 <u>molecule/reactant</u>. The subscript numbers in a molecule are important in
 this step.
- o Step 4: Balance the total number of electrons transferred by finding the lowest common multiple. → give e transferred per 1×1
- Step 5: Finish balancing the equation by balancing the number of atoms by inspection, just like in science 10 and chemistry 20.

EXAMPLES:

1. Use oxidation numbers to balance the following equation. 5kp 5:

Step 2:
$$+4 - (-2)$$
 $-2 - (-2)$ $-2 - (-2)$

Step 3: $-2 - (-2)$

Per molecula $-2 - (-2)$

Step 4. $-2 - (-2)$

Step 5. $-2 - (-2)$

Step 6. $-2 - (-2)$

Step 7. $-2 - (-2)$

Step 8. $-2 - (-2)$

Step 9. $-2 - (-2)$

2. Balance the following unbalanced reaction.

Step 2:
$$0-(-2)$$
 $-2-(-1)$
per atom = $2e^{-1}/5$ = $-1e^{-1}/0$

Step 3!
$$2e^{-1}/5 \times (1)$$
 $1e^{-1}/0 \times (2)$
Per molecule = $2e^{-1}/425$ = $2e^{-1}/02$