Cell Stoichiometry and Faraday's Law

- The amount of electrons that pass through a cell will determine the mass of the substances reacted or produced at the electrodes
- Michael Faraday investigated the relationship between electrical current (amount of electrons) and the electrochemical changes (change in mass or concentration) that occur at the anode and cathode
 - He found that the mass of an element produced or consumed at an electrode is directly proportional to the *current* and the *time* the cell operates. This is known as Faraday's Law.
 - Faraday's Law can be summarized by the following equation:

$$n_{e^{-}} = \frac{It}{F}$$
 * memorize!

where ne is the moles of electrons (mol)

I is current measured in amperes (A) watch correct units! t is time measured in seconds (s)

F is Faraday's constant (9.65x104C/mol) - found on pg. 3 of data booklet

- * Faraday's Law applies to both voltaic and electrolytic cells
 - In order for us to use Faraday's law, we need a reaction that actually shows the electrons.

Tmportant! * • Half-reactions are the only reactions that show electrons, therefore all cell stoichiometry questions are based off half-reactions and NOT the balanced redox reaction.

EXAMPLES

1. What is the mass of copper deposited at the cathode of a copper electro-refining

$$0 = \frac{It}{F} = \frac{(12.0A)(2400s)}{9.65 \times 10^4 \text{ C/mol}} = 0.2984...mol$$

2. In the chloralkali industry, large quantities of $\text{Cl}_{2(g)}$ are produced using an electrolytic process that is described below by the following chemical equation.

$$2 \, \text{NaCl}_{(aq)} \, + \, 2 \, \text{H}_2\text{O}_{(l)} \, \rightarrow \, 2 \, \text{NaOH}_{(aq)} \, + \, \text{Cl}_{2(g)} \, + \, \text{H}_{2(g)} \qquad \text{balanced} \qquad \qquad \\ + \, l \, - \, l \qquad + \, l \, - \, 2 \qquad + \, l \, - \, 2 \, + \, l \, - \,$$

If 500g of $Cl_{2(g)}$ needs to be produced in 24.00hrs, what is the required current?

①
$$M = nM \rightarrow n_{cl} = \frac{m}{M} = \frac{500g}{70.90glml} = 7.0521...mol$$

(3)
$$N_{e^{-}} = \frac{It}{F}$$
 \rightarrow $I = N_{e^{-}}F = (14.1043...ml)(9.65 \times 10^{4} \text{C/mol})$
 $t = 15.753...A$

Practice Problem

1. The following reaction describes the process that takes place in an electrochemical cell.

$$CI_{2(aq)}$$
 + 2 $KI_{(aq)}$ \rightarrow $I_{2(s)}$ + 2 $KCI_{(aq)}$

When 33.0g of iodine solid is produced by the cell, the cell needs to operate for minutes at 5.66A? **[73.9 minutes]**

- 2. A voltaic cell using $Mg_{(s)}/Mg^{2+}_{(aq)}$ and $Cu_{(s)}/Cu^{2+}_{(aq)}$ half-cells operates under standard conditions. The cell delivers 0.22A for 31.6 hours.
 - a. Will the mass of the magnesium metal increase or decrease? [decrease]
 - b. Find the change in mass of the magnesium metal. [3.15 g]