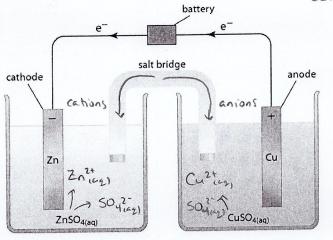

Electrolytic Cells


7 O.A. higher than R.A.

- Voltaic cells are <u>spontaneous</u> redox reactions which convert chemical energy to electrical energy. Voltaic cells are essentially batteries.
- A cell that uses an external source of electrical energy to drive a <u>non-spontaneous</u> redox reaction is called an <u>electrolytic cell</u> > requires a battery!
- Since electrolytic cells are non-spontaneous, the reducing agent must be higher than the oxidizing agent on the table on pg. 7 of data booklet
 - Let's compare a voltaic cell to an electrolytic cell

presence of battery = electrolytic cell

voltaic cell

electrolytic cell

 The cell potential (E°_{cell}) for an electrolytic cell is calculated the same way as a voltaic cell. All voltaic cells will have a positive cell potential and all electrolytic cells will have a negative cell potential.

Voltaic

Electrolytic

Comparing a voltaic cell to an electrolytic cell

Voltaic Cell	Electrolytic Cell
spontaneous	non-spontaneous
converts chemical energy to electrical energy	converts electrical energy to chemical energy
is a battery	requires a battery
anions move to anode and cations move to cathode	anions move to anode and cations move to cathode
electrons flow into cathode	electrons flow into cathode
 oxidation at anode 	oxidation at anode
 more negative electrical potential (E°) at anode 	 more positive electrical potential (E°) at anode
 strongest reducing agent at anode 	 "strongest" reducing agent at anode
reduction at cathode	reduction at cathode
 more positive electrical potential (E°) at cathode 	 more negative electrical potential (E°) at cathode
 strongest oxidizing agent at cathode 	 "strongest" oxidizing agent at cathode
positive cell potential (E ^o cell)	negative cell potential (E° _{cell})

Now try Practice Problems #1-8

Practice Problems: Electrolytic Cells

- 1. Consider the following *un-balanced* redox reactions:
 - a. $I_2 + Cl^- \rightarrow I^- + Cl_2$
 - b. $MnO_{4^{-}(aq)} + Br^{-}_{(aq)} \rightarrow Br_{2(l)} + Mn^{2+}_{(aq)}$ (acidic conditions)

For each <u>un-balanced</u> redox reaction above:

- i. indicate if the reaction is spontaneous or not
- ii. write out the half-reaction at the anode
- iii. write out the half-reaction at the cathode
- iv. write out the balanced redox reaction
- v. calculate the cell potential
- vi. indicate if it is a redox reaction that can take place in a voltaic cell or electrolytic cell
- 2. Oxidation takes place at what electrode in a voltaic cell?
- 3. Oxidation takes place at what electrode in an electrolytic cell?
- 4. An electrolytic cell and a voltaic cell can look very similar except for the presence or absence of what?
- 5. In a voltaic cell, electrons flow out of which electrode?
- 6. In an electrolytic cell, electrons flow out of which electrode?
- 7. Consider an electrolytic nickel-cadmium cell.
 - i. Identify the anode and cathode.
 - ii. Write out the oxidation half-reaction, the reduction half-reaction, and the net redox reaction.
 - iii. Calculate the cell potential.
- 8. Consider a voltaic nickel-cadmium cell.
 - Identify the anode and cathode.
 - ii. Write out the oxidation half-reaction, the reduction half-reaction, and the net redox reaction.
 - iii. Calculate the cell potential.

1.) a.
$$I_2 + CI \rightarrow I + CI_2$$

OA RA Oxidized

7.) i.) anode is Nics) is cathode is Cdis)

iii) oxidation: Nics) -> Ni²tags + 2e⁻

reduction: Cd²tags + 2e⁻ -> Cdis)

net: Nicss + Cd²tags -> Ni²tags + Cdis)

iii.) E'cell = -0.40 V - (-0.26 V)

[E'cell = -0.14 V]

8.) ii) anode is Cdiss is cathode is Nicss

iii) oxidation: Cdiss -> Cd²tags + 2e⁻

(ii) anode is Cdiss a cathedu is Nicis

iii) oxidation: Cdiss -> Cd2tigs + Ze

reduction: Ni2tings + Ze -> Nicis

net: Cdiss + Ni2tings -> Cd2tings + Nicis

iii.) Ecell= -0.26V - (-0.40V)


Ecell = + 0.14V

- <u>Electrolysis</u> is the process that takes place in a electrolytic cell and it literally means to "break apart"
- An electrochemical cell simply means voltaic or electrolytic.

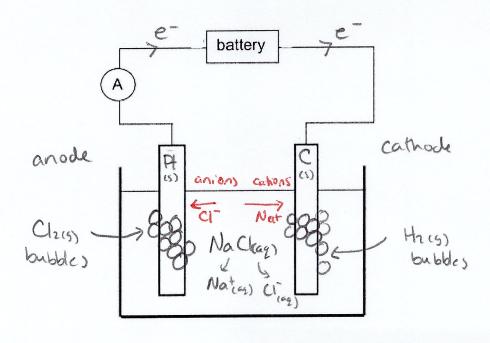
 $\underline{\mathsf{Example:}} \ \ \mathsf{Consider} \ the \ \mathsf{electrolysis} \ \mathsf{of} \ \mathsf{KI}_{(\mathsf{aq})}.$

- a. Identify and write out the half-reactions that occur at the anode and cathode.
- b. Write out the redox reaction that occurs in the electrolysis process.
- c. Label the diagram below.

Oxidation: 2 I can -> Izes + 2e-

- Sometimes the predicted reactions do not always occur in electrolysis.
 - The chloride anomaly occurs in aqueous solutions in which chloride ions are present. In these electrolytic reactions, even though H₂O_(I) is the stronger reducing agent, the half-reaction with Cl⁻(aq) will actually take place.

EXAMPLE: Consider the electrolysis of NaCl(aq).

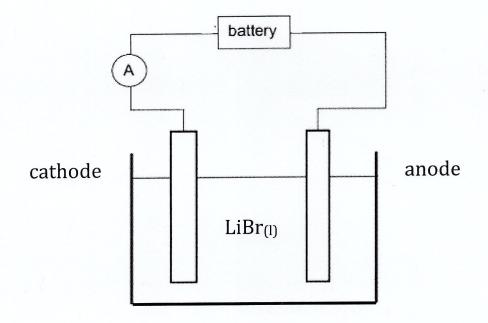

- a. Identify and write out the half-reactions that occur at the anode and cathode.
- b. Write out the redox reaction that occurs in the electrolysis process.

c. Label the diagram below. List all species present: Name, Climp, H2O(e)

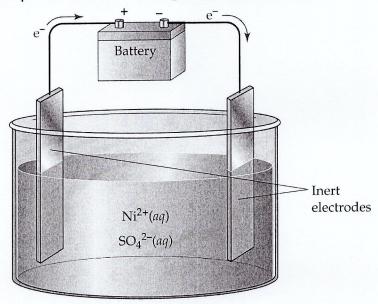
smorgest Oxidation: 201 mgs + de (anode side)

reduction: 2H2Oces + 2e -> Hzigs + 20Higs)

redox: 2 Class + 2H2O(e) -> Class + 20H (62) + H2(5)



Practice Problems


1. Predict whether the following reaction would take place in a voltaic cell or an electrolytic cell.

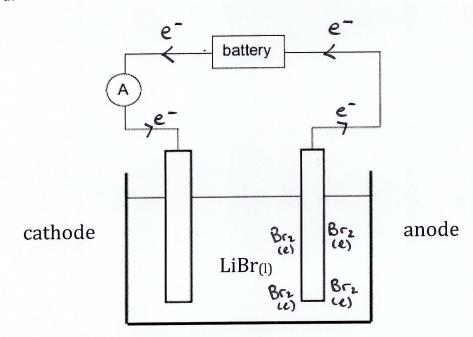
a.
$$2 \text{ Ag}^+_{(aq)} + \text{ H}_2 \text{SO}_{3(aq)} + \text{ H}_2 \text{O}_{(I)} \rightarrow 2 \text{ Ag}_{(s)} + \text{ SO}_4^{2^-}_{(aq)} + 4 \text{ H}^+_{(aq)}$$
 b. $\text{FeI}_{2(aq)} \rightarrow \text{Fe}_{(s)} + \text{I}_{2(s)}$

- 2. In the electrolysis of water, identify the gas produced at the anode and identify the gas produced at the cathode.
- 3. Consider the electrolysis of molten lithium bromide, LiBr_(l).
 - a. Write the half-reactions that take place at the anode and the cathode.
 - b. What voltage is required for this electrolysis purpose?
 - c. Will the mass of the cathode increase or decrease?
 - d. Correctly label the diagram below with the direction of electron flow and the location $Br_{2(l)}$ forms.

4. Consider the picture of the following electrochemical cell.

- a. Is the cell electrolytic or voltaic?
- b. What side is the anode located (left or right)?
- c. Write the half-reaction that takes place at the anode and cathode.
- d. Calculate the cell potential.

Answers


- 1.
- a. Voltaic cell
- b. Electrolytic
- 2. $O_{2(g)}$ at anode and $H_{2(g)}$ at cathode.
- 3.
- a. Anode:

$$2 \; Br^{\text{-}}{}_{\text{(I)}} \; \rightarrow \; 2Br_{2\text{(I)}} \; + \; 2 \; e^{\text{-}}$$

Cathode:

$$Li^+(I)$$
 + $e^- \rightarrow Li(I)$

- b. Increase
- c. -4.11 V
- d.

- 4.
- a. Electrolytic
- b. Left
- c. Anode:

$$2 \ H_2O_{(I)} \ \to \ O_{2(g)} \ + \ 4 \ H^+{}_{(aq)} \ + \ 4 \ e^-$$

Cathode:

$$Ni^{2+}_{(aq)}$$
 + $2e^{-}$ \rightarrow $Ni_{(s)}$

d. - 1.49 V

Helpful Hints to Determine the Anode and Cathode

VOLTAIC CELL (spontaneous rxn, therefore O.A. is *higher* than R.A.)

- Cathode: reduction half-reaction/ strong oxidizing agent half-reaction with a <u>more positive</u> reduction potential (E°)

ELECTROLYTIC CELL (non-spontaneous rxn, therefore O.A. is *lower* than R.A.)

- Cathode: reduction half-reaction/ "strongest" oxidizing agent -> therefore, needs a half-reaction with a *more negative* reduction potential (E°)
- Anode: oxidation half-reaction/ "strongest" reducing agent
 —> therefore,
 needs a half-reaction with a <u>more positive</u> reduction potential (E°)