Conductors in Magnetic Fields

 A conducting wire with a current running through it will experience a magnetic force when placed perpendicularly inside a magnetic field, just as a charged particle will experience a force when moving perpendicular through an external magnetic field

o 3rd Left Hand Rule applies because you still have moving charges in a

magnetic field

• The magnetic force acting on a conductor can be calculated by using the equation $\,F_{\scriptscriptstyle m} = Il_{\scriptscriptstyle \perp} B\,$

where

 F_m is magnetic force acting on the conductor/wire (N)

I is the current in the conductor/wire (A)

 $l_{\scriptscriptstyle \perp}$ is the length of the conductor/wire $\underline{\textit{in and perpendicular}}$ to

the magnetic field (m)

B is the magnetic field strength (T)

An important application of this is seen in the design of an electric motor

***This picture is using a <u>conventional current!</u>

: use righ

EXAMPLES:

1. If the conducting wire is deflected towards the back of the u-shaped magnetic, determine the polarity of the magnet.

2. A 0.120 m long copper wire has a mass of 9.02g and is carrying a current of 5.10A perpendicular to a uniform magnetic field. This apparatus is placed in a strong magnetic field and the wire is found to levitate. Calculate the magnitude of the magnetic field strength.

$$M = 9.02g \times \left(\frac{\ln q}{10^3 g}\right)$$

$$M = 9.02 \times 10^{-3} g$$

$$l_1 = 0.120 n$$

$$I = 5.10 A$$

$$\int_{6.0N} F_{g} = F_{m} + (-F_{g})$$

$$F_{g} = F_{m}$$

$$m_{g} = I L B_{1}$$

$$B_{1} = m_{g} = (9.02 \times 10^{-3} g)(9.9 / m/s^{2})$$

$$\frac{1}{12} = (5.10 A)(0.120 m)$$

3. A piece of wire with a length of 1.44m has a current of 2.78A running through it. If the wire is placed 56° to the magnetic field with a strength of 5.00T, what is the magnitude of force experienced by the wire?

$$l_{\perp} = \sin(56^{\circ})(1.44m)$$

 $l_{\perp} = 1.193...m$

4. The magnetic field strength between the horse shoe magnet is 0.335 T. What is the magnetic force acting on the conducting wire when a current of 2.65A is running through the wire?

$$B_{+} = 0.335 T$$
 $F_{m} = ?$
 $I = 2.65 A$
 $l = 2.50 cm \times \frac{10^{-2} m}{1 cm}$
 $l_{\perp} = 0.025 m \times don't use 15.0 cm!$

