Intramolecular Forces vs. Intermolecular Forces

- We already talked about the ionic bonds that exist in ionic compounds
 - * Recall that an ionic bond is due to the electrostatic attraction between the cations and anions that make up the ionic compound
- In contrast, we have already discussed how covalent bonds (both polar and nonpolar) exist in molecular compounds due to a sharing of electrons between atoms
 - lonic bonds and covalent bonds are both examples of intramolecular forces
 - o Intramolecular forces are the that hold atoms together within a molecule
 - Intermolecular forces are the forces that exist between molecules
 - Tip: to help remember the difference between the two
 - o the "a" in intramolecular stands for atoms (the forces between atoms)
 - the "e" in intermolecular stands for <u>e</u>ntire molecule (forces between entire molecules)

There are three types of intermolecular forces

1. DIPOLE-DIPOLE FORCES

- The electrostatic attraction between the negative poles and positive poles of polar molecules create **dipole-dipole forces**.
 - Dipole-dipole forces only exist in polar molecules! Remember that polar molecules are molecular and not ionic!

know S the difference?

- The strength of the dipole-dipole forces increases as the polarity of the molecule increases
 - The polarity of the molecule increases as the electronegativity difference (ΔEN) between the atoms increases
 - O EXAMPLE:

$$\Delta EN = 2.6 - 2.2$$

 $\Delta EN = 0.4$

VS DEN = 3.4-2.2 DEN = 1.2

.. has stronger dipole -dipole forces b/w molecules

EXAMPLE: When comparing CCI_{4(I)}, CH₃CI_(I), and CHCI_{3(I)}, which would have dipole-dipole forces between molecules?

only occurs in polar molecules!

C= Hue-C1= 7ve (x4)

· Cl · C · Cl ·

° C\°

symmetrical = not polar C = Hve -H = 1-ve- (x3)

H ° C ° C 1°

Now try Practice Problem #1, 2

It = lue

C1 = 7 ve (x3) = 26 ve

: C1 : C : C1:

.. no dipole-dipole forces

2. HYDROGEN BONDING

- ★ Hydrogen bonding is a special type of dipole-dipole interaction that is very strong
 - When a hydrogen atom is covalently bonded to a highly electronegative atom (oxygen, nitrogen or fluorine), the electronegative atom pulls the electrons away from the hydrogen
 - * Therefore, hydrogen bonding can only exist in molecules that have O---H, N---H, or F---H bonds
 - Since hydrogen has no other electrons than the one bonding electron, the positive proton in the nucleus is mostly exposed
 - The electrostatic attraction between the exposed proton (or nucleus) of the hydrogen atom and the partial negative charge of the highly electronegative atom on the adjacent molecule creates a strong hydrogen.bond

intramolecular polar covalent bonding
$$\delta^+$$
 δ^+ δ^+ hydrogen bonding

3. London (Dispersion) Forces

- London (dispersion) forces are the attractive forces that act between <u>all</u> molecules
- London (dispersion) forces are the only forces that exist between nonpolar molecules and are very weak
 - Non-polar molecules can spontaneously form temporary dipoles due to the fact electrons in atoms and molecules are in constant rapid motion
 - For a brief instant, the distribution of electrons can become distorted so that one point in a molecule is slightly positive and another point is slightly negative.
 - This temporary dipole (ie. charge separation) induces/creates a temporary dipole in the molecules beside it
 - This process spreads/ "disperses" through the substance so the molecules are attracted together by this weak force

FYI only!

- *
- The strength of London (dispersion) forces depends on the size of the molecule
 - The London (dispersion) forces will be stronger with larger molecules because larger molecules have more electrons to increase the probability of a temporary dipole forming
- Comparing the relative strengths of intramolecular and intermolecular forces

EXAMPLES:

1. In which compound, $H_2O_{(I)}$ or $NH_{3(g)}$, will the hydrogen bonding be stronger?

greater
$$\Delta EN = 5$$
 tronger bond
 $\Delta - H$ $N-H$
 $\Delta EN = 3.4-2.2$ $\Delta EN = 3.0-2.2$
 $\Delta EN = 1.2$ $\Delta EN = 0.8$

Stronger hydrogen bonding than NH3

2. Distinguish what intermolecular bonds exist between CS molecules and CO₂

* definitely no hydrogen bonding b/c H-O, H-N, or H-F bonds are not present!

C=S

DEN = 2.6-2.6

DEN = 0

Ononpolar covalent

bond, making

the molecule

non-polar

only has

0=6ve (x2) =16ve

DEN=3.4-2.6

DEN=0.8

Den = 0.8

C-0 bonds,

but molecule is nonpolar b/c of symmetry

.. only has London

3. Rank the following substances that from the strongest to weakest bond strength with themselves.

sodium chloride, NaCl(s)

ionic compound

ionic bonding

= strongest

H = lve'(x4)

But

H = lve'(x4)

H = lve'(x4

NaCI, NH3, C20H42, CH4

larger molecule
= stronger London (dispersion)
forces

Practice Problems

- 1. Distinguish between dipole-dipole attractive forces and an ionic bond.
- 2. Compare $NH_{3(g)}$ and $C_2H_{4(g)}$ by
 - a. identifying the intramolecular forces that exist in each molecule (ie. ionic, nonpolar covalent, or polar covalent).
 - b. identifying which molecule/(s) form dipole-dipole attractions amongst themselves (ie. NH_{3(g)},C₂H_{4(g)} or both).
- 3. Compare CH₃F and NH₂F by
 - a. identifying the intermolecular forces that exist between molecules of each compound.
 - b. identify which compound has a stronger intermolecular force.
- 4. Identify which substance will have the weakest intermolecular forces, CH₃Cl_(I) or CHCl_{3(I)}.
- 5. Rank the following four moleucles from weakest to strongest intermolecular forces: H₂S, NH₃, H₂, H₂O
- 6. Dipole-dipole interactions are also known as Keesom forces, named after Willem Hendric Keesom. Keesom developed the theory of interactions between molecules with a permanent dipole. Which one of the following compounds will <u>not</u> have Keesom forces between its molecules?
 - a. HCl
 - b. NH₃
 - c. H₂O
 - d. CCl4

 7. Which of the following is not an example of an intramolecular bond or force? a. The bond between potassium and chlorine in potassium chloride. b. The bond between hydrogen and chlorine in hydrogen chloride. c. The force that binds together the atoms of sodium. d. The attraction between two molecules of ethanol.
8. Identify the substance that has hydrogen bonding.
a. methanol,CH₃OH(I)
b. carbon dioxide, CO ₂ (g)
c. difluormethane, CH ₂ F ₂ (I)
d. fluoromethane, CH₃F(I)
 9. Which intermolecular force is found in each of the following compounds: Cl₂, CO₂, N₂O₄, CH₄? a. Dipole-dipole forces b. London (dispersion) forces c. Hydrogen bonding d. Covalent bonding
10. Between molecules of which of the following compounds will London (dispersion) forces be the greatest? a. n-hexane, CH ₃ (CH ₂) ₄ CH ₃ b. 2,2-dimethyl propane, CH ₃ C(CH ₃) ₂ CH ₃ c. 2-methylbutane, CH ₃ CH(CH ₃)CH ₂ CH ₃ d. butane, CH ₃ (CH ₂) ₂ CH ₃

Answers to tractice trooking

11) · dipole-dipole forces are due to the electrostatic attraction blu the negative is positive ends of polar molecular compounds

· an ionic bond is due to the electrostatic attraction blw a cation : anion

$$2.) a.) N-H$$

 $\Delta EN = 3.0 - 2.2$
 $\Delta EN = 0.8$

ore polar covalent

H:N:H

H / M ""

not symmetrical

= polar

in has dipole-dipole
forces

C-H

DEN = 2.6-2.2

DEN = 0.4

notecules

have polar

covalent

intramolecular

forces

$$C = 4 \text{ ye}^{-}(\times 2)$$

$$H = 1 \text{ ye}^{-}(\times 4)$$

$$= 1 \text{ Que}^{-}$$

$$H H H H H$$

$$H H H H$$

$$H H H$$

symmetrical = not polar

.. no dipole-dipole forces

not symmetrical
= polar molecule
: dipole-dipole forces
exist

not symmetrical = polar molecule

exist
this molecule also has
hydrogen bonding due
to the N-H bond

b.) NHZF has stronger intermolecular forces

4.) Both CHCl3 & CH3Cl are polar molecules with dipole-dipole forces. However CHCl3 has more electrons than CH3Cl3 therefore CHCl3 will have stronger London (dispersion) forces.

:. CH3Cl will have the weakest intermolecular forces.

5.) Hz-weakest b/c it is linear in shape with a nonpolar covalent bond H-H

: only London (dispersion) forces exist

NH3 : H2O have hydrogen bonding

N-H H-OHO $\Delta EN = 3.0-2.2$ $\Delta EN = 0.8$ $\Delta EN = 3.4-2.2$ $\Delta EN = 1.2$

How will have stronger hydrogen bonding than NH3 b/c of the greater difference in electronegativity b/w the atoms

H2S - H:5:H -> 0.47550.4

polar molecule : H2S has dipole-dipole forces

Hz, HzS, NH3, HzO

weakest Strongest

- 6.) D
- 7.) D
- 8.) A
- 9.) B
- 10.) (